适用于77GHz汽车雷达的线路板材料的关

北京治疗酒渣鼻医院 http://pf.39.net/bdfyy/bdfzd/210310/8733705.html

半导体技术的进步促进了毫米波技术的发展,在经济型的汽车上使用77GHz雷达系统即将成为现实。未来这些雷达安全系统作为量产的商用毫米波设备和组件,不可避免地成为“自动驾驶”汽车的组成部分。当然,不可不说的是,印刷电路板的高频线路板材料在77GHz汽车雷达应用中的重要性。在高频频段,尽管许多新的线路板材料被研制出来,但它们并非都适合这种高频率使用。在毫米波频率下,哪些线路板材料特性最为关键呢?对这些特性的理解有助于简化毫米波应用,特别是对于77GHz汽车雷达系统线路板材料的选择。

高频率具有不可比拟的商业价值,因为有更宽的可用带宽。随着手机、WLAN和其它商业应用大量应用较低的频段,60,77甚至94GHz的毫米波频段能够满足如第五代(5G)蜂窝系统和汽车雷达等新兴应用的越来越大的带宽需求。了解毫米波频率下基本材料属性,不仅适用于77GHz的线路板材料应用,还适用于越来越多28GHz以上的高频应用。

关键特性

77GHz雷达(和其它毫米波)电路设计的六个关键线路板材料特性包括介电常数(Dk)或相对介电常数(εr)、损耗因子(Df)或损耗角正切,或tanδ、铜表面粗糙度、Dk的热稳定系数(TCDk)、吸水性和玻璃纤维效应。在毫米波频率下,高频线路板材料很少能在所有六种特性中表现出色。此外,考虑到毫米波频率的小波长下需要的精细电路尺寸,PCB材料的加工特性也是选择这种电路材料的重要考虑因素。很难找到一种在所有六种特性中都能提供高质量的线路板材料,而且这种材料还具有可重复性和可靠的电路制造能力。

对77GHz汽车雷达和其它毫米波电路应用的线路板材料Dk的考虑实际上有两个方面:原始基板介质本身的Dk,以及与电路相关的设计Dk。对于原始基板介质Dk,可以根据其公差和色散来考虑。Dk公差是由制造层压板过程中的一些变量决定的一种材料参数,在某些应用中可能需要比较小的公差。根据高频率毫米波电路的经验,通常±0.的Dk容差是可接受。Dk色散是材料的自然属性,是指Dk随频率的变化特性。对于宽带应用而言,这通常更为重要,因为材料必须工作在很宽的不同频率下,例如77GHz频段。

设计Dk是由材料电路形式确定的Dk“工作值”的一种形式。设计Dk1-3受许多变量的影响,因此很难评估参数的变化。众所周知,通过电路媒质的电磁(EM)波传播速率会因材料Dk的增加而变慢。同样的,线路板材料的铜粗糙度会影响电磁波的相速,影响线路板材料在77GHz和其它毫米波频率下的性能(见图1)2。

图1.有效Dk与频率的关系,基于仅有铜箔表面粗糙度不同的50Ω微带传输线电路测试。

如图1所示,基于相同的4mil的LCP基板材料加工制作了四种不同的层压板和电路。这款LCP是一种各向同性的基板,在较宽的微波和毫米波频率范围内都性能优异。这四种层压板的介质完全相同,但使用了不同的铜箔类型,具有不同铜箔表面粗糙度。不同的表面粗糙度指的是介质与铜箔相连接的界面处的铜箔表面粗糙度,是在在覆铜层压板形成前测量得到的表面粗糙度。将不同粗糙度的层压板送到PCB制造制作50Ω微带传输线进行测试。每组实验测试的电路都是只有长度不同、其他都均相同的两个电路。使用微带差分相位长度法,通过每个电路的长度不同,就可以得有效的Dk与频率的关系。如图1所示,铜箔表面最平滑的电路具有最低的有效Dk。而粗糙铜箔的电路显示出有效Dk增加的趋势。在仅仅只有铜箔表面粗糙度不同的情况下,电路中有效Dk的差异约为0.3。

对于设计Dk,使用较薄的比使用较厚材料的电路更容易受到铜箔粗糙度的影响。例如,如果使用较厚的基板进行类似图1测试,则不同铜表面粗糙度的有效Dk值的差异将小得多。正如图中四个有效Dk微小曲率所表明的那样,其随频率有一些变化。这种变化与微带传输线的色散特性有关,同时也是材料色散的结果。当从有效Dk数据中提取Dk时,Dk与频率的关系曲线(设计Dk曲线)通常会有一个小的负斜率,如图2a和2b所示。

图2.多个5mil厚的RO?线路板材料的微带线设计Dk,电解铜(a)和压延铜(b)。

图2a和2b中所示的Dk与频率的关系曲线显示了正常的变化趋势,随着频率的增加呈轻微的负斜率。即使在Dk反推计算过程中除了微带线色散的影响,材料色散也将导致Dk随频率略微降低。设计Dk值的范围(~3.1)可能看起来很大,但实际上并不大,因为许多变量都会影响设计Dk。对于材料,介质材料Dk的变化范围仅为±0.或0.。电路加工也会使其发生一些变化,例如导体宽度和梯形效应的变化。梯形效应指的是信号导体的形状,理想情况下是矩形横截面,但实际电路多为的是梯形形状。导体形状的变化会导致电流密度和边缘场的变化,并且在较高的毫米波频率下,这些效应会影响性能。图2中所示曲线的变化也与基板厚度的公差、最终铜镀层厚度的以及铜箔表面粗糙度的变化有关。

如图2a中所示的电路上使用的标准电解(ED)铜,其表面粗糙度会出现正常的上下变化;这些电路所使用的ED铜的表面粗糙度典型值为2.0μmRMS,但实际的粗糙度可以在1.8至2.2μm之间变化。对于在这个粗糙度变化范围,稍光滑的电路,设计Dk的值较低,稍粗糙的电路,设计Dk的值会较高。对于图2a中的设计Dk范围(77GHz下的0.),考虑到影响它的许多变量,这是一个良好控制的设计Dk容差(±0.)。

与图2a相比,图2b使用更光滑的压延铜的相同介质电路材料,设计Dk的变化就要小的多。尽管在ED铜和压延铜的电路加工上也存在一些细微的差异,但这表明光滑的压延铜可以减小设计Dk变化。

铜箔表面粗糙度及其变化也会影响高频微带电路的插入损耗。较粗糙的铜箔表面会导致较高的导体损耗并最终导致更高的插入损耗。插入损耗还取决于电路基板厚度,其中较薄的电路比较厚的电路更容易受铜箔表面粗糙度的影响。例如,对于在相同介质材料上制造的电路,比较具有不同铜箔表面粗糙度和不同厚度的电路,使用光滑和粗糙铜箔的薄电路之间的插入损耗差异比使用相同铜箔的厚电路之间的插入损耗差异更显着。在使用5mil厚度RO材料的电路的情况下,使用光滑压延铜和使用粗糙ED铜的电路在25GHz下的插入损耗差为0.35dB/in。对于类似的比较,使用20mil厚度的RO层压板,粗糙的ED铜和光滑的压延铜的电路插入损耗差为0.10dB/in。这表明较薄的电路比厚的电路受铜箔表面粗糙度差异的影响更大,而大多数毫米波电路是需要选择相对薄的电路材料的。

为了显示铜箔表面粗糙度的影响,图3给出了具有相同(5mil)介质厚度但铜箔表面粗糙度不同的两种类似线路板材料上的微带电路。这些都是目前在77GHz应用中广泛使用的材料,罗杰斯公司的RO材料已有较长一段时间且出货量大。ROG2?材料是最新发布的一款材料,它是基于RO材料,专门针对77GHz汽车雷达应用进行了优化的电路材料。因为这两种材料具有相似的Dk和Df值,插入损耗中显示的差异主要是由于铜箔表面粗糙度带来的。使用标准ED铜的RO材料的铜箔表面粗糙度典型值为2.0μmRMS,而使用的压延铜的典型值是0.35μmRMS。ROG2材料采用超低粗糙度的(VLP)ED铜,表面粗糙度的典型值仅为0.7μmRMS。

图3.基于5mil厚度具有相似Dk值材料、不同表面粗糙度的77GHz电路微带插入损耗曲线

T与RO层压板的ED铜箔相比,ROG2的VLPED铜箔显著改善了电路的插入损耗。尽管仍不如压延铜的插入损耗性能,但成本相比压延铜具有很大的优势。VLPED铜箔比ED铜箔的材料成本约高一点,但与更昂贵的压延铜相比却节省了大量成本,且插入损耗性能明显提高。越光滑的铜箔,如类似VLPED铜箔,电路具有更加一致的相位响应。另一方面,对于77GHz汽车雷达电路使用的微通孔,更平滑的VLPED铜有利于激光钻孔加工微通孔。另外,ROG2使用小的圆球形填料颗粒也有利于激光钻孔。通过激光钻孔和较小的填料颗粒,使加工的毫米波频率(例如77GHz)下的电路性能变得更加容易且性能实现更高的可重复。

由于汽车雷达传感器的工作温度范围广,TCDk是一个极其重要的线路板材料参数和特性,是衡量材料的Dk随温度变化的程度。对于许多应用,TCDk值应小于

50

PPM/℃即可以接受。该值是一个绝对值,是因为TCDk可以是正数或负数,趋近于零表示Dk随温度变化最小的。如图4a和4b所示,Dk可以随频率和温度变化可能很大,可能较小。该图比较了两个5mil的ROG2和一种PPE层压板Dk随温度的变化情况。

图4.电路在不同温度下,对77GHz的汽车雷达应用的优势材料(a)和一种PPE基板材料(b)微带传输线测试情况

77GHz汽车雷达传感器在安装于汽车内部,汽车的行驶环境造就雷达传感器的工作环境的确是恶劣的,还包括潮湿环境吸水性的影响。线路板材料吸水性参数就是指线路板材料在给定环境中可吸收的水分多少。水分子是有极性的,会增加PCB插入损耗,也会导致线路板材料的Dk的增加。由于相位一致性对于77GHz汽车雷达应用至关重要,因此线路板材料吸水性对相位一致性的任何影响都值得

转载请注明:http://www.abuoumao.com/hytd/534.html

网站简介| 发布优势| 服务条款| 隐私保护| 广告合作| 网站地图| 版权申明

当前时间: 冀ICP备19029570号-7